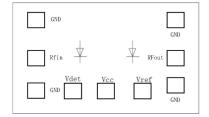


GaAs pHEMT MMIC 负峰值功率耦合检波器, 0.5 - 40 GHz

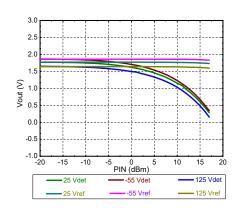

主要特点

频率范围: 0.5GHz~40GHz 插入损耗: 2.6dB@40G

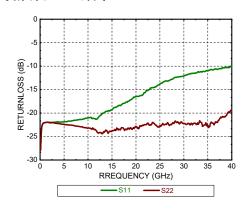
回波损耗: 15dB 动态范围: 30dB 静态电流: 0.4mA

芯片尺寸: 1.24 × 0.7 × 0.1 mm³

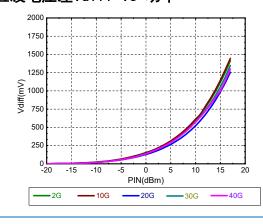
功能框图

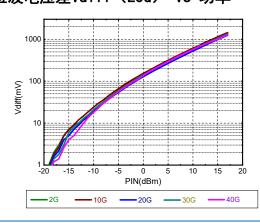


性能指标(T_A = +25°C, VCC = +5V, 负载开路)

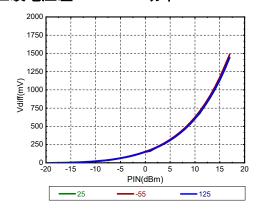

参数	最小	典型	最大	单位
工作频率	0.5 - 40			GHz
插入损耗		1.5	2.6	dB
回波损耗		15		dB
检波电压差	20		1500	mV
动态范围		30		dB
工作电流		0.4		mA

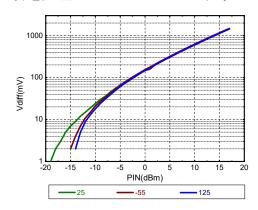
检波电压差计算公式: Vdiff=| Vref-Vdet |, Vdet 为检波输出电压, Vref 为参考输出电压约 1.85V。


Vdet/Vref单端输出电压 VS 功率@10GHz

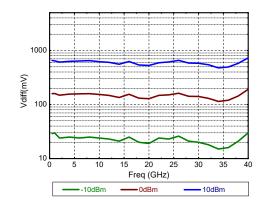

回波损耗 VS 频率

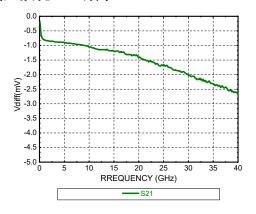
检波电压差Vdiff VS 功率

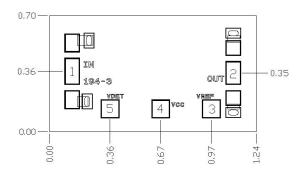

检波电压差Vdiff(LOG) VS 功率



GaAs pHEMT MMIC 负峰值功率耦合检波器, 0.5 - 40 GHz

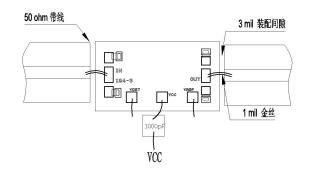

检波电压差Vdiff VS 功率@10GHz


检波电压差Vdiff(LOG) VS 功率@10GHz


检波电压差Vdiff VS 频率

插入损耗 VS 频率

物理参数


GaAs pHEMT MMIC 负峰值功率耦合检波器, 0.5 - 40 GHz

6

焊盘描述

焊盘序号	功能	描述
1	IN	射频输入焊盘,DC 耦合并匹配至 50 欧姆
2	OUT	射频输出焊盘, DC 耦合并匹配至 50 欧姆
3	Vref	参考电压输出
4	VCC	电源端,接+5V 电源电压
5	Vdet	检波电压输出
芯片背面	GND	芯片背面必须连接至 RF/DC 地

推荐装配图

- 注: 1. Vdet 和 Vref 端负载等效电阻需大于 100K 欧姆, Vref 端口不用时可开路。
 - 2. 射频端口根据使用条件增加隔直电容, VCC 电源端口要求增加芯片滤波电容 1000pF。

注意事项

- 1. 芯片厚度为 100 um
- 2. 典型射频键合焊盘尺寸为 150*80 um²
- 3. 键合焊盘金属化: 金
- 4. 芯片背面镀金
- 5. 芯片背面接地
- 6. 该产品对静电较敏感,使用时请注意防静电

极限参数

- 1. 射频输入功率: +18dBm
- 2. 储存温度: -65~+150°C
- 3. 工作温度: -55~+125°C